skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koziara, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High spatial/temporal resolution mobile transects were used to examine the thermal and moisture structure of the sea-breeze front (SBF) along the Mississippi coast during August 2014 and 2015. Compared to most similar studies, conditions were much warmer and more humid. Results show a 1-2 g/kg increase in mixing ratio across the mature SBF zone, and up to a 2.5°C temperature decrease. When SBF radar fine lines are identifiable, their position agrees very well with surface thermodynamic changes. Although temperatures were cooler at the coast, microscale offsets in location of thermal, moisture, and radiative features are noted in the vicinity of the SBF, particularly when the sea-breeze system is relatively weak or immature. At times, it seems that strong solar insolation causes the temperature to rise temporarily within the transition zone behind the kinematic SBF. These results are at variance with most other diagnostic studies. Some thermodynamic variations are noted within the marine air mass in connection to minor water bodies such as Biloxi Bay. The potential for passage of the SBF to at least temporarily increase human heat stress as described by heat index is also noted. 
    more » « less